A Spectroscopic Analysis of the Main Sequence A star, KIC 11145123

Masahide Takada-Hidai (Tokai University) D. Kurtz (Univ. Central Lancashire) H. Shibahashi (Univ. Tokyo) S. Murphy (Univ. Sydney, Arhus Univ.) M. Takata (Univ. Tokyo), H. Saio (Tohoku Univ.) T. Sekii (Univ. Tokyo)

Contents

- 1. Introduction and Purposes
- 2. Observations and Reduction
- 3. Analyses of Atmospheric Parameters
- 4. Analyses of Rotation Velocity
- 5. Abundance Analyses
- 6. Magnetic field
- 7. Summary and Discussion

- Kurtz+(2014, MNRAS, 444, 102) argued that:

- → The robust determination of the rotation of the deep core and surface of the star. Period of rotaion ratio: <u>P(core) : P(surface) = 1 : 0.93</u>
- → Its rotation is the nearly rigid rotation with a period near 100 days, so that it is very important to clarify what a strong angular momentum transfer mechanism operates to make a rigid slow rotation.
- Among A stars, there are slow rotators such as magnetic Ap stars and nonmagnetic Am stars.
- → No known Ap star shows such low overtone p modes and g modes as detected in KIC 11145123.
- detected in KIC 11145123.
- → Am stars are generally slow rotator.
- → Our target may be Am star or not?
- Blue straggler stars are known to show slow rotation (Vsin i) with mostly less than a few 10 km/s.
- → Our target may be **blue straggler star or not**?

Purposes:

To clarify the properties of our target, we carried out the spectroscopic analyses, based on the high-dispersion spectra observed with HDS on the Subaru telescope.

Issues to be clarified:

- 1. Atmospheric parameters: Teff, log g, ξ, [Fe/H]
- 2. Radial velocity: Vrad \rightarrow stellar population
- 3. Rotation velocity: Vsin $i \rightarrow$ asteroseismic Vsin i correct?
- what local velocity fields? 4. Abundances: [X/H], [X/Fe] → how are pattern and trend ? Am or Blue straggler ?
 - All OF BIDE SU Aggle

what stellar population ?

5. Magnetic field: \rightarrow try to search for <H>

2. Observations and Reduction

- 2.1 Observations
 - KIC 11145123 basic data:
 - α=19:41:25.3, δ= +48:45:15.08 Kp=13.123, J=12.441, H=12.356, K=12.335
 - Observation Date: 2015 July 3
 - Subaru HDS (Echelle spectrograph)
 - StdYc setup with wavelength range:
 - Blue part: 4400—5720 A, Red part: 5800 7120 A Image Slicer #3 was used.
 - \rightarrow Wavelength resolution = 160000
 - Total exposure time = 8000 sec (4 exposures)

2.2 Reduction

- IRAF-Echelle package is used for standard procedure of CCD data reduction:
- bias, background, and cosmic ray subtraction
- flat-fielding
- extraction of single spectra
- dispersion correction for wavelength scale
- coaddition and combination of spectra
- normalization of spectra
- Doppler correction: 64 Fe I and 24 Fe II lines are used to obtain radial velocity Vrad.
 - \rightarrow apparent Vrad = -145.38 ± 0.21 km/s
 - \rightarrow heliocentric Vh = -135.35 ± 0.21 km/s

- Wavelength resolution R = 160000
 Th-Ar comparison spectra are measured to obtain
 FWHM and core intensity from which R is estimated.
 Signal-to-Noise (S/N) ratios:
 photon counts of continua at central wavelength of
 each orders are measured to obtain S/N ratios.
 - 80 120 and average 107 in blue region,
 - $100-120\,$ and average 112 in red region,
 - \rightarrow S/N of the spectra is ~100 110.

Atmospheric parameters : Teff, log *g*, ξ , [Fe/H] - Estimated following the method of Takeda + (2002, PASJ, 54, 451), based on the equivalent widths of selected Fe I and Fe II lines. - The basic principle of the method:

 \rightarrow to find the solution in the (Teff, log g, ξ) space, iterating the model from the starting model by changing values of each parameters.

3.1 Model and line data

 SPTOOL code (Takeda, 2006): for sp. synthesis, abundance. The code is based on Kurucz ATLAS9 and WIDTH9 codes.
 Model: 1D LTE model of Kurucz (1993) ATLAS9

- gf values: 67 Fe I lines ... Westin+ (2000, ApJ,530,783)

21 Fe II lines ... Westin+ (2000) for 15 lines, Takeda+ (2005, PASJ,57,27) for 6 lines.

<u>Step 3</u>

- Confirm whether parameters satisfy requirements (A) (C).
- ξ : see Fig.1 and 2. \rightarrow confirmed \rightarrow 3.08 +0.57, -0.40 km/s
- Teff: see Fig. 3 and 4 \rightarrow confirmed \rightarrow 7590 +82, -135 K - log g: see Fig. 5 and 6 \rightarrow confirmed \rightarrow 4.22 \pm 0.13
- [Fe/H]: log FeI and log FeII \rightarrow average log Fe \rightarrow -0.71 ±0.11
- (Fe/H): log Fel and log Fell \rightarrow average log Fe \rightarrow -0./1 \pm 0.1

< Final model >

Teff = 7590 + 82, - 135 K log g = 4.22 \pm 0.13 ξ = 3.08 +0.56, - 0.40 km/s [Fe/H] = -0.71 \pm 0.11

4. Analysis of Rotation Velocity

- 4.1 Data used for the analysis:
- Clean Fe I and II lines selected from the lines used for determination of atmospheric parameters.
 → 51 lines of Fe I, 19 lines of Fe II are used.
- 2) Lines used in Landstreet et al (2009, A&A, 503, 973):
 CrII 4634.0 A, Fel 4637.5 A and CrII 4554.9 A, Till 4563.7
 A. → These lines are used to confirm the Landstreet et al's argument.
- 3) Th-Ar emission spectra for determination of spectral resolution (R) and instrumental profile.

4.2 Method

The program MPFIT in the code SPTOOL (Takeda, 2006)
 → to derive a total broadening velocity (VT) by fitting
 Gaussian profiles to observed ones (Takeda et al 2008).
 Definition: VT^2 = VT^2 + VM^2 + Vi^2; VT+m^2 = VT^2 + Vm^2.

 \$=3.08 km/s and the instrumental profile with
 Vi=Co/2R√In2 = 1.126 km/s corresponding to
 R = 160000, Co 光速度.

 A broadening velocity Vr+m = convolution of rotation (Vr) and
 macroturbulence (Vm) = √VT^2 - VI^2.

 Ym are estimated for lines of Landstreet et al. to confirm their
 argument.

 Fe I and Fe II give VT values to obtain the final Vr+m.

andstre	et+ (2009) arg	gued:			
Vsin <i>i</i> i	s dependent o	n line streng	gth; Vsir	n <i>i</i> ∝Wλ,	so that the
signati	ures of local ve or lines	locity field i	may beo	come mor	e evident in
able 1	shows our resu	lts of V⊤and	d Vr+m	(km/s).	
	Tab.1			. , . ,	
					-
	line	Wλ (mA)	Vτ	Vr+m	
	 Cr II 4554	33.0	6.69	6.59	
	Cr II 4554 Cr II 4634	33.0 42.0	6.69 6.75	6.59 6.66	
	Cr II 4554 Cr II 4634 Ti II 4563	33.0 42.0 174.2	6.69 6.75 7.54	6.59 6.66 7.45	

2. Fe I and II lines

 V_M and Vr+m are analyzed for both Fe I and Fe II lines. Fig. 9: Correlation of Vr+m with W_λ for Fe I lines. Fig. 10: Correlation of Vr+m with W_λ for Fe II lines.

Results:

As seen from Fig. 9 and 10, Vr+m of Fe I lines distributes with smaller deviation than that of Fe II lines.

 \rightarrow Adopte Vr+m of Fe I lines.

- As discussed by Landstreet+ (2009), the true value of vsin*i* is (at most) as large as the minimum value found using the weakest, sharpest lines, implying that the influence or effect of local velocity field becomes minimum at the limit of $W\lambda = 0$ mA.

 Fig. 9 gives the intercept of Vr+m,0 = 6.18 km/s, and regarded as <u>apparent</u> rotation velocity Vsini, because we cannot separate rotation component (true Vsini) from Vr+m,0.
 Adopted apparent projected rotation:

Va sin*i* = 6.2 \pm 0.6 km/s

Problem: If Vsini = 1 km/s inferred from asteroseismology is

true, what local velocity field is responsible for apparent Vsini ?

5. Abundance Analyses

- 5.1 Atomic data
- gf values for elements except for Fe I and Fe II: Kurucz & Bell (1995, CD-ROM#23) updated by Castelli & Hubrig (2004, A&A, 425, 263).
 Hyper fine splitting (hfs):
- Ba II McWilliam (1998, AJ, 115, 1640) Isotopic ratio is also adopted. → abundance diff. = 0.0 -- 0.3 dex
 - Other Elements Kurucz (2011, website)
 - Sc II, Mn I ... lines stronger than 20 mA are treated with hfs effect.
 - \rightarrow abundance diff. < 0.1 dex

5.2 Measurements and calculations

(1) Measurements:

Equivalent widths (W_X) are measured with Gaussian profile fitting for almost all lines by SPSHOW program in SPTOOL. Direct integrations are used for blended lines which are not fitted with Gaussian profile.

(2) Calculations:

- Abundance calculations are carried out by WIDTH program in SPTOOL, which is modified version of WIDTH9.

- Lines with hfs components are calculated by MPFIT program in SPTOOL to derive their abundances.

(3) Error estimations:

- Errors due to measurements of Wλ, gf-values
 → standard deviation (σ) of average abundances of each ions.
- Errors due to uncertainties of atmospheric parameters: Δ Teff = +82, - 135 K; Δ log g = \pm 0.13;
- Δξ = + 0.57, 0.40 km/s.
- $\rightarrow \sigma tg \xi = \sqrt{\sigma t^2 + \sigma g^2 + \sigma \xi^2}$
- Total errors σ tot = $\sqrt{\sigma^2 + \sigma tg\xi^2}$

5.4 Summary of Abundances of KIC 11145123

- 1. No under-abundances of [Sc/Fe] and [Ca/Fe] \rightarrow not Am star.
- 2. No over-abundance of [Cr/Fe] \rightarrow not Ap star.
- 3. General pattern is more consistent with normal A stars rather than Am and Ap stars.
- 4. General pattern is consistent with both δ Sct stars and γ Dor stars due to the same average difference from KIC values.
- 5. Abundance trends of [Li/Fe], [C/Fe], and [O/Fe] are consistent with blue straggler stars. C and O are not depleted.

6. Magnetic field

Mathys (1990) method: Fe II 6147.7, 6149.2 A line ratio. → magnetic field modulus <H>

- △W= W(6147.7) W(6149.2)
- $\overline{W} = [W(6147.7) + W(6149.2)]/2$
- $\rightarrow \bigtriangleup W/W = 0.087$
- → <H> = 2.7 \pm 0.4 kG from Mathys & Lanz (1992) 's empirical relationship.
- Fig. 19 depicts observed and synthetic spectra of Fe II lines.
- → Asymmery of line core of Fe II 6149.2 line is not confirmed due to low quality and line broadening.

2. Rotation Velocity (Vsini)

- Vr+m,0 = 6.2 ± 0.6 km/s is convolution of rotation velocity and macroturbulence, which are not separated in our calculation.
 → adopted Vr+m,0 = apparent Va sini = 6.2 ± 0.6 km/s
- → Confirming the asterosesmic Vsin*i*.
- asteroseismology gives Vr = Vsini = 1 km/s, and $i \sim 70^{\circ}$ \rightarrow macroturbulence Vm = 6.5 km/s.
- Problem:
 - (1) What is velocity field responsible for Vm ?
 → Convection ? Pulsation ? Other mechanism ?
 - (2) What is mechanism responsible for the rigid rotation ?

3. Abundances

- Low metallicity [Fe/H] and high radial velocity suggest that KIC11145123 may be a thick-disk star or a blue straggler star.
- Population is not clear due to lack of distance and proper motion.
 Abundance pattern suggests that the star seems to be more
- consistent with a normal A star. - Abundance pattern is consistent with both δ Sct and γ Dor stars.
- Abundance pattern's consistent with both 0 set and y bot stars.
 Abundance trends of Li, C, and O suggest that KIC11145123 is more likely a blue straggler star.
- → The values of [C/Fe] and [O/Fe] are normal.
- \rightarrow This implies that the origin of KIC11145123 may be due to collision of two stars.
- (If C and O are depleted, mass transfer/accretion origin.)

4. Magnetic field

<H> = 2.7 \pm 0.4 kG is regarded as an upper limit.

If the magnetic field exists, it may contribute to make the star a slow rotator due to braking effect.

Thanks for your attention!