2017/03/04 第22回天体スペクトル研究会@仙台市天文台

近赤外線高分散分光による 変光星の解析

福江慧 (京都産業大学) 松永典之、小林尚人(東京大学) 近藤荘平、池田優二、濱野哲史(京都産業大学)、 安井千香子、辻本拓司(国立天文台) G.Bono(ローマ大学)、L.Inno(マックスプランク天文学研究所)

Hバンドでのセファイドの解析

トレーサーとしての セファイド型変光星

3

- ・距離指標:周期一光度関係から距離が精度よく導出できる。
- •年齢や運動、化学組成についても良いトレーサーとなる。

3.Results

金属量の解析方法の例

- ・ 大気パラメータの導出
 - 有効温度: ライン強度を用いた温度スケール(Fukue+2015)
 - 表面重力:セファイドの周期から見積もり。
 - ミクロ乱流: Blackwell diagramから見積もり。
- ・ 恒星大気モデルの作成: SPTOOL (Takeda+1995)
 - 原子ラインリスト: Melendez & Barbuy (1999)
 - 分子(CO,CN,OH)ラインリスト: Kurucz (1993)

・ スペクトル fitting: MPFIT (Takeda+1995)

- ・ブレンドの少ないFeライン95本に対して実行
- 金属量のヒストグラムに対し、Gaussian fitから平均値導出。

ライン強度比 LINE DEPTH RATIO

- ・ LDRによる温度スケールの作成
 - 精度良く温度が決定されている天体で、温度に敏感なラインと鈍感なラインの深さを測定し、両者の比(LDR)を取る。
 - ・「LDR vs 温度」から、他天体に適用できる関係式を導出。
 - ・観測量から経験的に作成され、減光等の影響も少ない。
- 可視光での先行研究
 - 例) 約160天体から131個の関係式を導出(Kovtyukh+2007)

HバンドでのLDRの構築

- Hバンドでの温度スケール (Fukue et al. 2015)
 - ・ 温度が既知である金属量標準星8天体を用いて、9つのペアを作成
 - Fe, Co, Si, Al, Ti, Kのラインを採用。

観測ターゲット

Object	Sp.Type	Teff (K)	logg (dex)	[Fe/H] (dex)	Period (days)
CF Cas	F8Ib-G0Ib	5454-6115	1.7-2.0	$+0.00 \pm 0.03$	4.875
δСер	F5lb-G1lb	5625-6663	1.9-2.6	$+0.04 \pm 0.05$	5.366
DL Cas	G1lb	5438-5860	1.4-1.7	-0.01 ± 0.00	8.000
Х Суд	F7Ib-G8Ib	4851-6145	0.8-1.9	$+0.10 \pm 0.03$	16.386
SV Vul	F7lab-K0lab	5005-5856	0.65-1.20	$+0.05 \pm 0.08$	44.994

Takeda et al. (2013), Andrievsky et al. (2002) and Kovtyukh et al. (2005)

- 望遠鏡: SUBARU 8.2m telescope
 - マウナケア山頂で大気吸収の影響を軽減
- 分光器:IRCS (Kobayashi et al. 2000)
 - ・観測波長 : Hバンド (1.4—1.8µm)
 - 波長分解能: R=20,000
 - 化学組成解析には必須の高分解能スペクトルを取得
- 観測日時
 - 2010/06 (PI松永)
 - 2012/05 (PI松永)
 - 2012/07 (PI松永)
 - ・ 福江も観測に参加
- データ処理
 - 解析パッケージIRAFを使用
 - ・ 波長校正は大気吸収線を用いた
 - 精度0.04Å
- 得られたS/N
 - 標準星はいずれもS/N>100
 - GCセファイドの S/N=35—55

IRCSのスペクトル

Hバンドでのセファイドの 有効温度決定

11

• 周期に関わらず、観測時の位相に応じた温度を導出。

近赤外線分光器 WINERED

12

WINERED

	Wide mode	Hires-Y mode	Hires-J mode		
Wavelength coverage [µm]	0.90~1.35	0.96~1.11	1.14~1.35		
Spectral Resolution	28,000	80,000			
Total throughput [%]	>50	>32	>42		
Slit width [µm]	100 , 140 , 200 and 400				
Instrumental Volume [mm]	1750[L] × 1070[W] × 500[H]				
Operation temperature [K]	270~300*				
Array	Hawaii-2RG 1.7µm cutoff				

Otusbo+2016 SPIE

荒木望遠鏡@京産大 に搭載したWINERED

チリへの移設

14

赤外線高分散分光ラボ(LIH)

- LiH (= Laboratory of infrared High-resolution spectroscopy)
- ・ 2015年4月より始動
- 赤外線高分散分光に関わるサイエンス、開発に特化した組織

http://merlot.kyoto-su.ac.jp/LIH/

- ライン強度比を用いた有効温度の決定
 - セファイドのように温度が変化する天体には有効。
 - ・ 可視光、Hバンドでは温度スケールが構築された。
 - ・ zYJバンドでも温度スケールが構築できる見込みあり。
- WINERED
 - ・チリへ移設後、1月にNTT望遠鏡でのファーストライトを無事達成。
 - WINEREDを用いた観測やデータに興味がある方はご連絡を。
 - http://merlot.kyoto-su.ac.jp/LIH/