すばる望遠鏡の 新近赤外高分散分光装置IRDによる 中期M型矮星のスペクトルの解釈

石川裕之(総研大)

Hiroyuki Tako ISHIKAWA (SOKENDAI)

小谷隆行, 大宮正士 (ABC), 青木和光, 臼田知史, 林左絵子 (NAOJ)

第23回 天体スペクトル研究会 @ ノートルダム清心女子大学 on 25 February, 2018

M dwarfs

M型矮星

SpTy Dwarf T (K)		$R(R_{\rm sun})$	Mass (M_{sun})	$L/100 (L_{sun})$		
Contraction of the local division of the loc	M0	3800	0.62	0.60	7.2	
「「「「」」	M 1	3600	0.49	0.49	3.5	
and the second se	M2	3400	0.44	0.44	2.3	
State of the state	M3	3250	0.39	0.36	1.5	
State of the local division of the local div	M 4	3100	0.26 ^a	0.20	0.55	
	M5	2800	0.20	0.14	0.22	
Chinese Strength	M6	2600	0.15	0.10	0.09	
「二十二十二十二十二	M7	2500	0.12	~0.09	0.05	
	M8	2400	0.11	~ 0.08	0.03	
On the second	M9	2300	0.08	~ 0.075	0.015	
	·				· · · · · · · · · · · · · · · · · · ·	

[Kaltenegger et al. 2009]

地球

太陽近傍の恒星の > 70%

[Covey et al., 2008; Bochanski et al. 2010]

 $T_{eff} = 5800 \text{ K}$

 $M = 1 M_{\odot}$

 $R = 1 R_{\odot}$

 $L = 1 L_{\odot}$

M型矮星まわりの惑星探査

1. 惑星の間接検出 (RV法 / Transit法) に有利

2. ハビタブル惑星の検出や追観測に有利

3. 近傍にサンプル数が多いので有利

近年多くの惑星サーベイ

トランジット法

MEarth(Irwin et al. 2015) TRAPPIST(Gillon et al. 2013) APACHE(Sozzetti et al. 2013) TESS(Ricker et al. 2016) ... etc. CARMENES(Quirrenbach et al. 2014) IRD(Kotani et al. 2014) HPF(Mahadevan et al. 2012) SPIRou(Artigau et al. 2014) ... etc.

RV(ドップラー)法

惑星が見つかれば、 その惑星の**現在の環境**あるいは<mark>形成・進化過程</mark>を知るために **中心星のパラメータ**を知ることは重要

その中でも 恒星大気の化学組成 は、
 惑星の形成環境における化学組成を反映し
 内部構造にも制限をつける。(e.g. Fe, Si, Mg, C, O … etc.)

[e.g. Unterborn & Panero, 2017; Dorn et al. 2017]

M型矮星の高分散スペクトルの難点

い・TiOなど分子吸収線が多く可視スペクトルが複雑

(これまで金属量の決め方としては一般的に経験式が用いられてきた)

近赤外高分散分光を用いた組成解析

Courtesy of P. Hauschildt and J. Bean et al.

wavelength (µm)

近赤外高分散分光装置の発展

M型矮星は

近赤外波長域の方が**明るく**、 **分子吸収**も比較的少ない

近赤外高分散スペク トルを用いた研究	適用天体	波長帯域, 分解能	決めたパラメタ
Önehag+12	MO-M4.5	Δλ ~ 500 @ J	[Fe/H]
(CRIRES)	11個	R ~ 50,000	
Lindgren+16,17	M0-M4.5	Δλ ~ 500 @ J	[Fe/H]
(CRIRES)	28個	R ~ 50,000	FeH線 -> T _{eff}
Souto+17	M1	Δλ ~ 2,000 @ Η	13種の組成
(APOGEE)	2個	R ~ 20,000	OH ->
Rajpurohit+17 (APOGEE)	M0- <mark>M8</mark> 45個	Δλ ~ 2,000 @ H R ~ 20,000	[Fe/H], T _{ef} f, log g (全部fitting) (K,Ca,Al,Mg -> log g)
Veyette+17 (NIRSPEC)	M0-M5 29個	Δλ ~ 2,000 @ Y R ~ 25,000	[Fe/H] [<mark>Ti</mark> /H] T _{eff}
Passegger+18	MO-M4	Δλ ~ 11,000 @ Y , J , H	[Fe/H]
(CARMENES etc.)	300個	R ~ 90,000	T _{eff}

	近赤外高分散スペク トルを用いた研究	適用天体	波長帯域, 分解能	決めたパラメタ
	Önehag+12 (CRIRES)	MO-M4.5 11個	Δλ ~ 500 @ J R ~ 50,000	[Fe/H]
	Lindgren+16,17 (CRIRES)	M0-M4.5 28個	Δλ ~ 500 @ J R ~ 50,000	[Fe/H] FeH線 -> T _{eff}
	Souto+17 (APOGEE)	M1 2個	Δλ ~ 2,000 @ Η R ~ 20,000	13種の組成 OH ->
	Rajpurohit+17 (APOGEE)	M0- <mark>M8</mark> 45個	Δλ ~ 2,000 @ Η R ~ 20,000	[Fe/H], T _{ef} f, log g (全部fitting) (K,Ca,Al,Mg -> log g)
	Veyette+17 (NIRSPEC)	M0-M5 29個	Δλ ~ 2,000 @ Y R ~ 25,000	[Fe/H] [<mark>Ti</mark> /H] T _{eff}
重	Passegger+18 (CARMENES etc.)	MO-M4 300個	Δλ ~ 11,000 @ Y , J , H R ~ 90,000	[Fe/H] T _{eff}
	個々の元素の組成なより広い波長帯	を十分な精度で 域で多様な テ	決め、他の恒星パラメ ī素の個々の吸収 縦	ータも決めるため、 <mark>泉</mark> を多く調べたい

波長帯域の比較

近赤外高分散スペク トルを用いた研究	適用天体	波長帯域, 分解能	決めたパラメタ
Önehag+12	MO-M4.5	Δλ ~ 500 @ J	[Fe/H]
(CRIRES)	11個	R ~ 50,000	
Lindgren+16,17	M0-M4.5	Δλ ~ 500 @ J	[Fe/H]
(CRIRES)	28個	R ~ 50,000	FeH線 -> T _{eff}
Souto+17	M1	Δλ ~ 2,000 @ H	13種の組成
(APOGEE)	2個	R ~ 20,000	OH ->
Rajpurohit+17 (APOGEE)	M0- <mark>M8</mark> 45個	Δλ ~ 2,000 @ Η R ~ 20,000	[Fe/H], T _{ef} f, log g (全部fitting) (K,Ca,Al,Mg -> log g)
Veyette+17 (NIRSPEC)	M0-M5 29個	Δλ ~ 2,000 @ Y R ~ 25,000	[Fe/H] [<mark>Ti</mark> /H] T _{eff}
Passegger+18	MO-M4	Δλ ~ 11,000 @ Y , J , H	[Fe/H]
(CARMENES etc.)	300個	R ~ 90,000	T _{eff}
本研究	M4 ~	Δλ ~ 7,000 @ Y, J, H	11種の組成 ~
(IRD)	2個 ~	R ~ 70,000	

データの取得と吸収線の同定および等価幅解析

データの取得

IRDエンジニアリングラン in 2017年 8月, 9月 S/N比 > 100

バーナード星 (GJ 699)	固有運動で有名なM4V型星 (運動速度・自転周期・金属量 から、古い種族という予想)	80秒 x 3回 (CRIRES @ ESO-VLTの スペクトルも比較に利用)
LHS 1140	ハビタブルゾーンにスーパーア ースが報告された M4V 型星 (古い種族の可能性が示唆)	1500秒 x 1回
HR 7596	バーナード星 の 大気補正用の 高速自転星	80秒 x 3回
HR 8634	LHS 1140 の 大気補正用の 高速自転星	20秒 x 2回

主に PyRAF のタスクを利用してリダクション

等価幅の測定

(splot @ IRAF)

結果と議論

1 FeH分子の結果 ② 各種原子 (11種) の結果

結果と議論①: FeH分子 吸収線強度 (log(EW/λ)) 依存性 右上がりのトレンド?

マイクロ乱流速度 ξ_t の間違い? $\rightarrow \xi_t$ を変えても改善せず

●バーナード星の問題? →LHS 1140 でも同じトレンド⁰⁶

IRDの問題? →CRIRES-POPでも同じトレンド

未解決…

減衰定数の取り扱い調整、別の大気モデル との比較、擬似continuumの評価、…etc.?

-6.0

5.2

-5.8

 $\log^{-5.6}(EW/\lambda)$

結果と議論

FeH分子の結果 各種原子 (11種)の結果

各種原子の結果

元素	バーナード星	σ	本数	LHS 1140	σ	本数
[Fe/H]	-0.25	0.10	20	-0.07	0.09	20
[Na/Fe]	0.24	0.20	3	0.37	0.18	4
[Mg/Fe]	1.05:	0.29	1			0
[Al/Fe]	-0.23	0.28	1			0
[Si/Fe]	0.25	0.41	1			0
[K/Fe]	-0.03	0.47	3	0.16	0.49	2
[Ca/Fe]	0.24	0.21	7	0.19	0.19	6
[Ti/Fe]	0.49	0.13	25	0.25	0.13	27
[V/Fe]	0.52	0.28	1	0.69	0.28	1
[Cr/Fe]	0.06	0.15	10	0.01	0.15	11
[Mn/Fe]	0.01	0.18	4	0.32	0.19	4

結果と議論②: 原子 先行研究との比較

経験式を用いた先行研究とも誤差の範囲内で一致。

結果と議論②:原子 個々の元素から伺えるバーナード星の種族

-								
	元素	バーナード星	σ	本数	LHS 1140	σ	本数	
	[Fe/H]	-0.25	0.10	20	-0.07	0.09	20	
	[Na/Fe]	0.24	0.20	3	0.37	0.18	4	
	[Mg/Fe]	1.05:	0.29	1				
	[Al/Fe]	-0.23	0.28	1	Si, Mg, J	AIは信	用で	きない
([Si/Fe]	0.25	0.41	1				AT MARKET STATE
	[K/Fe]	-0.03	0.47	3	Ca Ti	(十大陸	↓ ⊢ ∩	名い
	[Ca/Fe]	0.24	0.21	7	Ca, II			301
	[Ti/Fe]	0.49	0.13	25	士い種だ	E であ	ステレ	~ 示 唆
	[V/Fe]	0.52	0.28	1				_ 小い文
	[Cr/Fe]	0.06	0.15	10	A State State State			
	[Mn/Fe]	0.01	0.18	4	鉄族元素	は太陽	易程度	[, 妥当

[Fe/H]が低くα元素が多い傾向から、化学組成の面でも バーナード星が古い種族の天体である可能性を支持。 LHS 1140 はバーナード星に比べると金属量が高い。 種族については結論は出せない。

● 本研究にとって重要な結論としては、

IRDのデータを組成解析に適した形に一次処理し、 100本以上のFeH線と11種類の原子線の同定に成功。 IRDのスペクトルがM型矮星の化学組成解析に 有用であることが確認できた。

まとめ

IRDの広い波長帯域で、近赤外高分散スペクトルのモデル比較により 直接的にM型矮星の各種元素の組成を決定すること。

2つの中期M型矮星の Y, J スペクトルにおいて、 吸収線の同定・等価幅解析を行った。

FeH吸収線について、<mark>得られる[Fe/H]が線強度に依存する</mark>という解析 上の問題を見つけた。

また、各種原子の吸収線から11種類の元素の組成を決め、 バーナード星が古い種族であることを支持する結果を得た。

IRDのスペクトルがM型矮星の組成解析に有用であることを確認した。 今後、連星を用いた補正や、晩期M型矮星への拡張を予定している。

石川 裕之(総研大)